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a b s t r a c t   
 

In order to efficiently tune photovoltaic performance, a series of linear A-Ar-A type small molecules  

(SMs) of (DRCN3T)2Ar were designed and synthesized, which contain the same terminal of 2-(1,1- 

dicyanomethylene) rhodanine (DRCN) and p-bridged space of 5-vinyl-trithiophene (3T), but different 

central arylene (Ar) unit, respectively. Significantly extending film absorption and increasing hole 

mobility were obtained in these SMs with enlarging Ar units from phenylene (Ph), naphthylene (Nap) to 

anthrylene (Ant). As a result, photovoltaic properties were remarkably improved in these SM/PC71BM 

based solution-processing organic solar cells (OSCs) by enlarging Ar units in (DRCN3T)2Ar. The highest 

power conversion efficiency of 5.15%  with a short-circuit current density of 11.34  mA cm—2 was obtained 

in the (DRCN3T)2Ant based device, which is three times of that in the (DRCN3T)2Ph-based device. Our 

work further indicates that properly extending Ar core could be beneficial to improve photovoltaic 

properties for the A-Ar-A type SMs. 

© 2016  Elsevier Ltd.  All  rights reserved. 

 
 

 

 

1. Introduction 

 
Organic solar cells (OSCs) with bulk heterojunction (BHJ) ar- 

chitectures have been considered as a promising solar energy 

conversion technology because of their some advantages of solu- 

tion processablility, lightweight, low-cost and flexibility in large- 

area applications [1e9]. Their photovoltaic performances  have  

been rapidly improved by development of novel photovoltaic ma- 

terials and optimization of device processing technology in the past 

few years. Much progress with a power conversion efficiency (PCE) 

about 10% was achieved in the single-junction polymer-based OSCs 

(PSCs) and small/oligomer molecule-based OSCs (SM/OM-OSCs), 

respectively   [10e13].    However,   only   a   few   SMs   exhibited  a 
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comparable photovoltaic performance in contrast to polymeric 

photovoltaic materials. The development of new photovoltaic SMs 

is still needed for high-performance SM-OSCs [13e16]. 

Generally, spectral response, absorption intensity, molecular 

orbital energy levels, charge mobility and film morphology have an 

important influence on photovoltaic performance of donor mate- 

rials, which are mostly dominated by molecular structure [16e21]. 

To optimize these properties, alkyls in side chains, and the bridge 

length, central building blocks, end groups in skeleton, as well as 

the linkage positions of functional groups were tuned in the 

photovoltaic SMs [6,22e28]. On the other hand, a class of A-p-D-p- 

A type SMs was constructed to realize the above goal, which con- 

tains a central electron-donating (D) unit, two terminal electron- 

accepting (A) units and two p-conjugated bridges. There are 

several advantages for this kind of SMs applied in SM-OSCs, such as 

(i) high mobility with planar structure and efficient p-p in- 

teractions, (ii) a low bandgap, which is beneficial for intramolecular 

charge transfer, (iii) good film quality due to a long conjugated 

backbone and dispersed alkyl chains similar to polymers [29e31]. 

As  a  result,  these  A-p-D-p-A  type  SMs  exhibited  a significantly 
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increasing PCE of 10.08% in SM-OSCs [13]. 

In recent years, rhodanine was reported as a promising type of 

acceptor terminal unit in photovoltaic SMs owing to its strong 

electron-withdrawing property and effectively inducing intra- 

molecular charge transfer [31e35]. By modifying rhodanine, tuning 

the D and p-bridge blocks, the A-p-D-p-A type SMs have showed a 

high PCE of 9%e10% [13,36]. While the arylene (Ar) hydrocarbon 

replaces those conjugated electron-rich D unit with heteroatom, it 

was further found that the A-p-Ar-p-A type SMs with a weak 

electron-donating Ar unit (phenylene or naphthylene) exhibited a 

deeper HOMO energy level than those analogues with stronger 

electron-donating D units (thiophene or thieno-thiophene), which 

presented higher Voc value [37,38]. Our group recently obtained a 

similar type SM of DPP2An(2,6), which exhibited an increasing PCE 
of 5.44% and higher hole mobility of 4.02 x 10—4 cm—2 v—1s—1 than 

0.90e0.86 (m, 12H). MS (MALDI-TOF) m/z: calcd for C64H82O2S6 

[M]þ,  1710.68;   found, 1710.66. 

 
2.2.2. Synthesis of Nap(3TCHO)2 

Nap(3TCHO)2 was prepared according to the synthetic proced- 
ure of Ph(3TCHO)2. A red solid of 200 mg was obtained with a yield 

of 68.0%. 1H NMR (400 MHz, CDCl3):d 9.84 (s, 2H), 8.01 (s, 2H), 7.85 

(d, J 8 Hz, 2H), 7.75 (d, J 8 Hz, 2H), 7.61 (s, 2H), 7.32 (s, 2H), 7.28 

(s, 2H), 7.18 (d, J 4 Hz, 2H), 2.85e2.83 (q, 8H), 1.75e1.68 (m, 8H), 

1.45e1.38 (m, 8H), 1.35e1.25 (m, 32H), 0.90e0.88 (m, 12H). MS 

(MALDI-TOF) m/z: calcd for C68H84O2S6 [M]þ, 1124.48; found, 

1124.679. 

 
2.2.3. Synthesis of Ant(3TCHO)2 

Ant(3TCHO)  was prepared according to the synthetic proced- 

DPP2Ph and DPP2Nap [39]. It indicates that the terminal A and 

central Ar units play an important role in improving photovoltaic 

properties for their resulting SMs. 

In order to efficiently tune photovoltaic performance and 

further reveal influence of the central Ar and terminal A units on 

properties, a series of linear A-Ar-A type SMs of (DRCN3T)2Ar was 

primarily designed and synthesized. An Ar unit and 2-(1,1- 

dicyanomethylene) rhodanine (DRCN) were respectively used as 

central core and terminal acceptor, 5-vinyl-trithiophene (3T) was 

employed as space and insetted between Ar and A units in these 

SMs. The optophysical, electrochemical and photovoltaic properties 

were systematically investigated. Significant effect of the central Ar 

unit on these opto-electronic properties was observed in these SMs 

of (DRCN3T)2Ar. The photovoltaic properties were remarkably 

improved in these SMs/PC71BM-based solution-processing OSCs by 

enlarging Ar units in (DRCN3T)2Ar. The best photovoltaic properties 

with  a  PCE  of  5.15%   and  a  short-circuit  current  density  of 

11.34 mA cm—2 were obtained in the (DRCN3T)2Ant based OSCs. 

2. Experimental section 

 
2.1. Materials 

 
All starting materials, unless otherwise indicated, were pur- 

chased from commercial suppliers and used without further puri- 

fication. Compounds 1, 2, 3, 4 and 5 were prepared according to the 

reported methods [40e42]. Three new photovoltaic SMs of 

(DRCN3T)2Ar were characterized by MS, 1H NMR, and elemental 

analysis, which are consistent with their molecular structures. 

 
2.2. Synthesis 

 
2.2.1. Synthesis of Ph(3TCHO)2 

A solution of 1,4-benzenediboronic acid bis(pinacol) ester (78  

mg,  0.235  mmol)  and  500-bromo-3,300-dioctyl-[2,20:50,200-ter- 

thiophene]-5-carbaldehyde  (300  mg,   0.517   mmol)   in   toluene   

(8 mL) and 1  M  aqueous  sodium  carbonate  (Na2CO3)  solution  

(2 mL) was degassed twice with argon. Then tetrakis(triphenyl- 

phosphine)palladium (Pd(PPh3)4, 10 mg, 0.026 mmol) and Aliquat 

336 (0.05 mL) were added and the resulting mixture was stirred at 

80 0C for 24 h under argon atmosphere. Cooled down to room 

temperature, the mixture was poured into water (60 mL), and 

extracted with chloroform (CHCl3, 3 x 10 mL). The organic layer 

was dried over anhydrous sodium sulphate (Na2SO4). The solvent 

was removed off by a rotating evaporator and the residue was 

purified by silica gel chromatography using a mixture of petroleum 

ether (PE) and dichloromethane (DCM) (2:1) as eluent to provide 

red solid (151 mg, 60.0%). 1H NMR (400 MHz, CDCl3): d 9.84 (s, 2H), 

7.61 (s, 4H), 7.26 (s, 4H), 7.22 (s, 2H), 7.16 (d, J   4Hz, 2H), 2.87e2.76 

(q, 8H), 1.74e1.66 (m, 8H), 1.47e1.40 (m, 8H), 1.34e1.26 (m, 32H), 

2 

ure of Ph(3TCHO)2. A red solid of 200 mg was obtained with yield of 

70.0%. 1H NMR (400 MHz, CDCl3): d 9.84 (s, 2H), 8.38 (s, 2H), 8.17 (s, 

2H), 8.00 (d, J     8 Hz, 2H), 7.74 (d, J     8 Hz, 2H), 7.61 (s, 2H), 7.36 (s, 

2H), 7.28 (d, J     4 Hz, 2H), 7.19 (d, J 4 Hz, 1H), 2.86e2.84 (q, 8H), 

1.76e1.70   (m,   8H),   1.48e1.42   (m,   8H),   1.35e1.25   (m, 32H), 

0.89e0.87 (m, 12H). MS (MALDI-TOF) m/z: calcd for C72H86O2S6 

[M]þ,  1174.5;  found, 1174.884. 

 
2.2.4. Synthesis of (DRCN3T)2Ph 

(3TCHO)2Ph (177 mg, 0.165 mmol) and 2-(1,1- 

dicyanomethylene) rhodanine (318 mg, 1.65 mmol) was dissolved 

in a solution of dry chloroform (20 mL), then five drops of trie- 

thylamine were added. The mixture was stirred overnight under 

argon atmosphere at room temperature. The solvent was then 

removed off with a rotating evaporator. The residue was dissolved 

in 8 mL of chloroform and precipitated from methanol. The pre- 

cipitate was filtered off and purified by silica gel chromatography 

using a mixture of PE and chloroform (1:1) as eluent to produce 

black  solid (180  mg, 77.0%). 1H NMR (400 MHz, CDCl3): d 8.00  (s, 

2H), 7.61 (s, 4H), 7.32 (s, 2H), 7.31  (s, 2H), 7.22 (s, 2H), 7.18  (d, 

J     4 Hz, 2H), 4.35e4.30 (q, 4H), 2.88e2.81 (q, 8H), 1.73e1.69 (m, 

8H), 1.44e1.42 (m, 14H), 1.33e1.25 (s, 32H), 0.91e0.88 (s, 12H). MS 

(MALDI-TOF) m/z: calcd for C80H92N6O2S8, [M]þ, 1424.50; found, 

1424.658. Elemental analysis for C80H92N6O2S8: calcd. C, 67.37; H, 

6.50; N, 5.89; S, 17.99;  found C, 67.10;  H, 6.32; N, 5.73; S, 18.12. 

 
2.2.5. Synthesis of (DRCN3T)2Nap 

(DRCN3T)2Nap was prepared according to the synthetic pro- 

cedure of (DRCN3T)2Ph. A black solid of 120 mg was obtained with 

a yield of 80.0%. 1H NMR (400 MHz, CDCl3): d 8.01 (d, J 8 Hz, 4H), 
7.86 (d, J     8 Hz, 2H), 7.76 (d, J     8 Hz, 2H), 7.33 (s, 4H), 7.31 (s, 2H), 

7.20 (d, J   4 Hz, 2H), 4.35e4.30 (q, 4H), 2.89e2.84(q, 8H), 1.80e1.70 

(m, 8H), 1.46e1.40 (m, 14H), 1.34e1.25 (m, 32H), 0.92e0.88  (m, 12H). 

MS (MALDI-TOF) m/z: calcd for C84H94N6O2S8 [M]þ, 1474.52; 

found, 1474.890. Elemental analysis for C84H94N6O2S8: calcd. C, 

68.34; H, 6.42; N, 5.69; S, 17.38;  found C, 68.10;  H, 6.35; N, 5.73; S, 

17.15. 

 
2.2.6. Synthesis of (DRCN3T)2Ant 

(DRCN3T)2Ant was prepared according to the synthetic pro- 

cedure of (DRCN3T)2Ph. A black solid of 180 mg was obtained with 

a yield of 82.0%. 1H NMR (400 MHz, CDCl3): d 8.34 (s, 2H), 8.14 (s, 

2H), 7.98 (d, J     12 Hz,4H), 7.72 (d, J   8 Hz, 2H), 7.35 (s, 2H), 7.31 (d, 

J    2 Hz, 2H), 7.28 (s, 2H), 7.20 (d, J    2 Hz, 2H), 4.31e4.27 (q, 4H), 

2.88e2.83 (q, 8H), 1.78e1.69 (m, 8H), 1.45e1.35 (m, 14H), 1.35e1.25 

(m, 32H), 0.91e0.87 (m, 12H). MS (MALDI-TOF) m/z: calcd for 

C88H96N6O2S8  [M]þ, 1524.54;  found, 1524.834.  Elemental analysis 

for C88H96N6O2S8: calcd. C, 69.25; H, 6.34; N, 5.51; S, 16.81; found C, 

69.08; H, 6.12;  N, 5.23; S, 16.40. 
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2.3. Measurements and characterization 
 

All 1H NMR spectra were recorded on a Bruker DRX-400 spec- 

trometer using CDCl3 as solvent at 298 K. Mass spectra were made 

on a Bruker Daltonics BIFLEX III MALDI-TOF analyzer. Thermogra- 

vimetric analyses (TGA) were conducted under a dry nitrogen gas 

flow at a heating rate of 10 0C min—1 on a PerkineElmer TGA 7. The 

differential scanning calorimetry (DSC) was measured on a TA 

DSCQ-10 instrument at a heating/cooling rate of 10 0C min—1 under 

a nitrogen atmosphere. UVeVis absorption spectra were recorded 

on a HP-8453 UV visible system. Cyclic voltammetry (CV) was 

carried out on a CHI660A electrochemical work-station in a three- 

electrode cell at room temperature, which was dipped in a 0.1 M 

tetrabutyl-ammonium hexa-fluorophosphate (Bu4NPF6) acetoni- 

trile solution under nitrogen protection at a scan rate of 100 mV/s. 

In this three-electrode cell, a platinum rod, platinum wire and Ag/ 

AgCl (0.1 M) electrode were used as a working electrode, counter 

electrode and reference electrode, respectively. The morphology of 

active layers was examined by transmission electron microscope 

(TEM), which was carried out on a FEI Tecnai T20 with LaB6 oper- 

ated at 200 kV. The active layer used as TEM measurement was 

placed onto a copper grid after dissolving the PEDOT: PSS in water 

[43,44]. 

 
2.4. Device fabrication and characterization 

 
OSCs were fabricated using indium tin oxide (ITO) glass as an 

anode, Ca/Al as a cathode, and a blend film of the SM/PC71BM as a 

photosensitive layer, respectively. After a 30 nm buffer layer of 

poly(3,4-ethylenedioxy-thiophene) and polystyrene sulfonic  acid 

(PEDOT:PSS) was spin-coated onto the precleaned ITO substrate, 

the  photosensitive  layer  was  subsequently  prepared  by spin- 

coating a solution of the SM/PC71BM (1:3, w/w) in CHCl3 on the 

PEDOT:PSS layer with a typical concentration of 10 mg mL—1. The 

resulting substrates were dried under nitrogen at room tempera- 

ture in a nitrogen-filled glove-box. Ca (10 nm) and Al (100 nm) were 

successively deposited on the photosensitive layer in vacuum and 

used as top electrodes. The current density-voltage (J-V) charac- 

teristics of the devices were carried out on a computer controlled 

Keithley   236   source   measurement   system  under simulated 

100  mW cm—2 (AM  1.5  G) irradiation from a Newport solar  simu- 

lator. Light intensity was calibrated with a standard silicon solar 

cell. The active area was 0.1 cm—2 each cell. The thicknesses of the 

spun-cast  films  were  recorded  by a  profilometer (Alpha-Step 200, 

Tencor Instruments). The external quantum efficiency (EQE) was 

measured with a Stanford research systems model SR830 DSP lock- 

in amplifier coupled with WDG3 monochromator and a 150 W 

xenon lamp. 

 
3. Results  and discussion 

 
3.1. Synthesis,  thermal property and crystallinity 

 
The general synthetic routes for these SMs of (DRCN3T)2Ph, 

(DRCN3T)2Nap and (DRCN3T)2Ant are outlined in Scheme 1. They 

were obtained with a yield about 80%. Their molecular structures 

are confirmed by the 1H NMR and MALDI-MS measurement, which 

are  consistent with  molecular formulas. 

The thermal stability of these SMs was investigated by TGA 

under the nitrogen atmosphere. The corresponding TGA curves and 

 
 

 
 

Scheme 1. Synthetic routes of (DRCN3T)2Ph, (DRCN3T)2Nap and (DRCN3T)2Ant. 
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Fig. 1. (a) TGA curves at a heating rate of 10 0C min
—1 

under nitrogen atmosphere and (b) DSC curves at a heating/cooling rate of 10 0C min
—1 

under nitrogen atmosphere for 

(DRCN3T)2Ph, (DRCN3T)2Nap and (DRCN3T)2Ant. 

 

Table 1 

Optical and electrochemical data of (DRCN3T)2Ph, (DRCN3T)2Nap and (DRCN3T)2Ant. 

Molecules ε(lmax) (M
—1 

cm
—1

) lmax (nm)
a lmax (nm)

b lonset (nm)
c Eg 

 

 
 
(eV) EHOMO (eV) ELOMO (eV) Eg 

 

 
(eV) Td (

0

C) 

(DRCN3T)2Ph 7.8 x 10
4 

521 579 706 1.76 —5.27 —3.57 1.70 354 

(DRCN3T)2Nap 7.6 x 10
4 

520 601 741 1.67 —5.25 —3.56 1.69 387 

(DRCN3T)2Ant 6.2 x 10
4 

523 585,625 763 1.63 —5.22 —3.57 1.65 394 

a  
Measured in CHCl3. 

b  
Measured in the thin film. 

c Eopt 
¼ 1240/l 

 

data were depicted in Fig. 1 (a) and Table 1, respectively. The 

thermal decomposition temperatures (Td) of 354, 387, 394 0C are 

exhibited for (DRCN3T)2Ph, (DRCN3T)2Nap, (DRCN3T)2Ant at 5% 

weight loss, respectively. It implies that all of three SMs here have 

good thermal stability. Further-more, the (DRCN3T)2Ant with 

bigger Ar rings shows better thermal stability than (DRCN3T)2Ph 

and (DRCN3T)2Nap. Therefore, properly extending the central Ar 

ring could enhance thermal stability, which is similar to the phe- 

nomena reported in our previous work. Fig. 1 (b) depicts the dif- 

ferential scanning calorimetry (DSC) plots of SMs in solid state. The 

typical endothermal peaks at 245, 247 and 237 0C are observed for 

(DRCN3T)2Ph, (DRCN3T)2Nap, (DRCN3T)2Ant during heating pro- 

cess, which correspond  to melting temperatures (Tm),  respectively. 

Moreover, (DRCN3T)2Ph, (DRCN3T)2Nap and (DRCN3T)2Ant also 

display  an  exothermal  peak  at  220,  201,  190  0C  during  cooling 

process, respectively. It indicates that three SMs possess good 

crystallinity. 

 
3.2. Optical properties 

 
The normalized UVeVis absorption spectra of (DRCN3T)2Ph, 

(DRCN3T)2Nap and (DRCN3T)2Ant in dilute CHCl3 solution and in 

their pure/blend films are shown in Fig. 2 (a). Their corresponding 

absorption data are summarized in Table 1. Strong and broad ab- 

sorption bands in the visible to near-infrared region are observed 

for these three SMs. In the solution states, all of three SMs exhibit 

the same absorption peak at ~521 nm in the low-lying region, that 

are independent of the central Ar units. The similar absorption may 

be contributed to the similar conjugation length of these series of 

molecules mainly governed by the six thiophenes units together 

with the two conjugated end units [13]. In the solid states, all of 

them display a broader and obvious red-shifted absorption peak by 

50e100 nm in the low-lying region in comparison to those in their 

solution absorption profiles. It indicates that ordered structure and 

strong p-p stacking effect, as well as intermolecular interaction 

should  exist  between  the  molecular  backbones  in  the  solid pure 

films. It is noteworthy that the (DRCN3T)2Ant films shows a larger 

red-shifted by 103 nm and a distinct shoulder at 625 nm, which 

result from a more effective molecular packing between molecular 

backbones by the effect of a lager conjugated anthracene. Based on 

the onset of the pure film absorption, the optical band gaps (Eopt) of 

(DRCN3T)2Ph, (DRCN3T)2Nap, (DRCN3T)2Ant are calculated to be 

1.76, 1.67  and 1.63  eV, respectively. 

Compared to the pure films, it is found that the SM/PC71BM 

blend films shows an increasing absorption in the range  of  

400e500 nm, as showed in Fig. 2 (b), which is assigned to the 

contribution of PC71BM. While those blend films are processed by 

1,8-diiodooctane (DIO) additive, the (DRCN3T)2Ant blend film 

further demonstrates a little increasing absorption intensity. In 

contrast, the (DRCN3T)2Ph and (DRCN3T)2Nap blend films display a 

little decreasing absorption intensity. It indicates that adding the 

DIO solvent additive in the (DRCN3T)2Ant blend films is in favour of 

improving  intermolecular interaction. 

 
3.3. Electrochemical  properties 

 
The electrochemical properties were characterized by cyclic vol- 

tammetry (CV) method, in which oxidation and reduction potentials 

were calibrated using the ferrocene/ferrocenium (Fc/Fcþ) redox 

couple (4.8 eV below the vacuum level). The energy levels of the 

highest occupied molecular orbital (HOMO) and lowest unoccupied 

molecular orbital (LUMO) are calculated from the onset oxidation 

and reduction potentials, respectively. The recorded CV curves are 

shown in Fig. 3 and the relevant data are summarized in Table 1. It is 

found that the HOMO energy levels (EHOMO) have a little increase 

from —5.27, —5.25 to —5.22 eV with the increasing Ar rings from Ph, 

Nap to Ant in (DRCN3T)2Ar. But their LUMO energy levels (ELUMO) are 

almost similar values at 3.56 ~ 3.57 eV, which are largely domi- 

nated by the same electron-deficient ending groups. The resulting 

electrochemical band gaps of (DRCN3T)2Ph, (DRCN3T)2Nap and 

(DRCN3T)2Ant are estimated to be 1.70, 1.69, 1.65 eV respectively, 

which are consistent with their optical band gaps. 
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Fig. 2. UVevis absorption spectra of (DRCN3T)2Ph, (DRCN3T)2Nap and (DRCN3T)2Ant 

in CHCl3 solutions and in pure films (a), blend films without DIO additive and blend 

films with 2% DIO additive (b). 

 
 

 

Fig. 3. Cyclic voltammetry curves of (DRCN3T)2Ph, (DRCN3T)2Nap and (DRCN3T)2Ant. 

 

 
 

Fig. 4. J-V curves of three SM-based OSCs at optimized processing conditions under  

the illumination of AM 1.5 G, 100 mW cm
—2

. 

 
 

Fig. 5. EQE curves of the (DRCN3T)2Ph, (DRCN3T)2Nap and (DRCN3T)2Ant based de- 

vices at the optimized processing conditions. 

 

 

3.4. Photovoltaic properties 

 
The photovoltaic properties of these linear SMs were investi- 

gated in their bulk heterojunction OSCs with a structure of ITO/ 

PEDOT:PSS/SM:PC71BM/Ca/Al. The device fabrication processes are 

described in detail in the experimental section. The ratios between 

SM and PC71BM were changed from 1:2, 1:3 to 1:4, as well as the 

doping concentrations of the DIO additive were tuned from 0%, 1%, 

2%e3% in order to optimize processing technology. The measured 

photovoltaic data of the SM/PC71BM based cells are listed in Table 

S1 and S2. It demonstrates that the optimized SM/PC71BM ratio is 

the same at 1:3, but the DIO additive has played different rule in 

different devices. For the (DRCN3T)2Ph and (DRCN3T)2Nap based 

cells, adding DIO additive destroys device performance. In contrast, 

adding 2% DIO additive makes the (DRCN3T)2Ant based cell exhibit 

the best device performance. The optimized photovoltaic perfor- 

mances for the (DRCN3T)2Ph, (DRCN3T)2Nap and (DRCN3T)2Ant 

 

Table 2 

Photovoltaic performance of the SM/PC71BM OSCs and the hole mobilities of the SM/PC71BM blend films. 

SM D:A (w/w) Voc (V) Jsc (mA/cm
2
) FF (%) PCE (%) mh (cm

2 
v
—1 

s
—1

) me (cm
2 
v
—1 

s
—1

) 

(DRCN3T)2Ph 1:3 0.97 ± 0.01 4.03 ± 0.11 43 ± 1 1.64 ± 0.05 (1.74) 6.56 x 10
—6 

2.80 x 10
—4

 

(DRCN3T)2Nap 1:3 0.98 ± 0.01 4.15 ± 0.18 48 ± 2 1.97 ± 0.03 (2.01) 1.44 x 10
—4 

2.52 x 10
—4

 

(DRCN3T)2Ant 1:3 0.95 ± 0.01 4.50 ± 0.11 51 ± 1 2.18 ± 0.06 (2.29) e e 

(DRCN3T)2Ant
a 

1:3 0.87 ± 0.01 11.08 ± 0.30 53 ± 2 5.11 ± 0.02 (5.15) 2.74 x 10
—4 

2.86 x 10
—4

 

a 
2% DIO additive. The average PCEs was obtained from over 5 devices. The best PCEs are provided in parentheses. 
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Fig. 6. J-V characteristics of the optimized hole-only (a) and electron-only (b) devices 

based on (DRCN3T)2Ph, (DRCN3T)2Nap and (DRCN3T)2Ant. 

 
 

based cells are listed in Table 2. The corresponding current  density 

vs voltage (J-V) curves are shown in Fig. 4 measured under AM 1.5G 

irradiation at  an intensity of  100  mW cm—2. Under the  optimized 

conditions, the PCE and short-circuit current density (Jsc) values are 

obviously improved from the (DRCN3T)2Ph and (DRCN3T)2Nap 

based cells to the (DRCN3T)2Ant based cell, whereas open-circuit 

voltage (Voc) values have a little decrease. The best photovoltaic 

performances with a PCE of 5.15% and Jsc of 11.38 mA cm—2 were 

obtained in the (DRCN3T)2Ant based cell at the optimized pro- 

cessing conditions. The results here further indicate that properly 

extending the central Ar ring could be beneficial to improve 

photovoltaic properties for the A-Ar-A type SMs [33e35]. 

To further understand why the (DRCN3T)2Ant based cell 

exhibited the highest Jsc value among these cells, the external 

quantum efficiency (EQE) curves of these devices under the opti- 

mized processing conditions were measured and shown in Fig. 5.A 

broad photo-response region with different EQE values in the re- 

gion of 330e700 nm is analogously observed for these devices. The 

(DRCN3T)2Ant based device displays a significantly improved EQE 

of 73% in comparison to the (DRCN3T)2Ph and the (DRCN3T)2Nap 

based cells. It indicates that introducing central Ant ring is available 

to increase EQE value for its SM, which is available to promote the 

increase of the Jsc  value. 

In order to explain why the (DRCN3T)2Ant based cell exhibited 

the highest FF value, the hole and electron mobilities of three SMs 

were measured in their hole and electron-only devices using the 

space charge limited current (SCLC) method, respectively. The J-V 

characteristics in the dark are depicted in Fig. 6 (a) and (b) for these 

optimized hole- and electron-only devices, respectively. An 

increasing   hole   mobility   is   observed   from   6.56   x   10—6    to 

1.44 x 10—4 and 2.74 x 10—4 cm2v—1s—1 in the hole-only 

(DRCN3T)2Ph,  (DRCN3T)2Nap and  (DRCN3T)2Ant based devices, 

respectively. However, the electron mobilities of three SMs have a 

little change in a range of 2.52 x 10—4 ~ 2.86 x 10—4 cm2v—1s—1. It is 

clear that (DRCN3T)2Ant presents much higher hole mobility and 

more balanced carrier mobility than (DRCN3T)2Ph and 

(DRCN3T)2Nap, which is consistent with the corresponding FF and 

Jsc results. It firmly demonstrates that properly extending the 

central Ar ring can increase hole mobility and balance carrier 

mobility due to better molecular packing of the enlarged Ar ring. 

 

 

 
 

Fig. 7. TEM images of the SM:PC71BM (1:3, w/w) blend films for (DRCN3T)2Ph (a,d), (DRCN3T)2Nap (b,e) and (DRCN3T)2Ant (c,f) without/with 2%DIO additive. 
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The morphologies of the SM/PC71BM blend films under the 

optimized processing conditions were recorded with transmission 

electron microscopy (TEM) and shown in Fig. 7. The observed dark 

phases are assigned to the PC71BM domains because of its relatively 

higher electron scattering density [39,45]. The fibrillar structure 

with a width around 30e60 nm are exhibited in these TEM images 

for the SM/PC71BM blend films without DIO additive (Fig. 7a, b and 

c). While the 2% DIO additive is added, the (DRCN3T)2Ant blend film 

show a continuous acicular fibrous structure with a decreased size 

of 14 nm (Fig. 7f). It means that a continuously interpenetrated 

network is formed in the (DRCN3T)2Ant blend film processed by 

DIO additive, which is favorable for the charge transportation. 

However, the (DRCN3T)2Ph and (DRCN3T)2Nap blend films show a 

significantly dispersed phase structures after processed by 2% DIO 

additive (Fig. 7d and e). It implies that the DIO additive has pro- 

motes molecular self-aggregation for (DRCN3T)2Ph and 

(DRCN3T)2Nap blend films. It further explains why the 

(DRCN3T)2Ant based cells exhibited higher FF values than the 

(DRCN3T)2Ph and (DRCN3T)2Nap based cells. 

 
4. Conclusions 

 
Three linear A-Ar-A type SMs of (DRCN3T)2Ph, (DRCN3T)2Nap 

and (DRCN3T)2Ant were obtained. The influence of the central Ar 

unit on optical, electrochemical and photovoltaic properties was 

presented. With enlarging the central Ar ring from phenylene, 

naphthalene to anthracene, the A-Ar-A type SMs of (DRCN3T)2Ar 

exhibited the much improved PCE and Jsc values. The best photo- 

voltaic performance with a PCE of 5.15% was obtained in the 

(DRCN3T)2Ant/PC71BM based cell, which is three times of that in 

the (DRCN3T)2Ph/PC71BM based device. 
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